NOTE :- For each question you will be awarded 3 marks if you have given correct answer and zero marks if any question is not attempted. For each wrong answer 1 mark will be deducted.
दिये गये प्रश्नों के लिये प्रत्येक सही उत्तर के लिये 3 अंक दिये जायेगें, कोई भी उत्तर ना देने की स्थिति में 0 अंक दिया जायेगा व प्रत्येक गलत उत्तर के लिये 1 अंक काटा जायेगा।

1. If $8 i z^{3}+12 z^{2}-18 z+27 i=0$, then the value of $|z|$ is -
(A) $3 / 2$
(B) $2 / 3$
(C) 1
(D) $3 / 4$
2. If $z=1+\cos \frac{\pi}{5}+i \sin \frac{\pi}{5}$, then $\{\sin (\arg (z)\}$ is equal to-
(A) $\frac{\sqrt{10-2 \sqrt{5}}}{4}$
(B) $\frac{\sqrt{5-1}}{4}$
(C) $\frac{\sqrt{5+1}}{4}$
(D) None
3. If $x=111 \ldots 1$ (20 digits), $y=333 \ldots 3$ (10 digits) and $z=222 \ldots 2$ (10 digits), then $\frac{x-y^{2}}{z}$ is equal to-
(A) 1
(B) 2
(C) $1 / 2$
(D) 3
4. The sum to 50 terms of is $-\frac{3}{1^{2}}+\frac{5}{1^{2}+2^{2}}+\frac{7}{1^{2}+2^{2}+3^{3}}+\cdots$
(A) $50 / 17$
(B) $100 / 17$
(C) 150/17
(D) 200/17
5. The solution set of is $-\frac{|\mathrm{X}-2|-1}{|\mathrm{X}-2|-2} \leq 0$
(A) $[0,1] \cup(3,4)$
(B) $[0,1] \cup[3,4]$
(C) $[-1,1) \cup(3,4]$
(D) None of these
6. If $a^{2}+b^{2}+c^{2}=1$, then $a b+b c+c a l i e ~ i n ~ t h e ~ i n t e r v a l-~$
(A) $[1,2]$
(B) $\left[0, \frac{1}{2}\right]$
(C) $\left[-\frac{1}{2}, 1\right]$
(D) $[0,1]$
7. The constant term in the expansion of is $-\left(1+X+\frac{2}{x}\right) 6$
(A) 479
(B) 517
(C) 569
(D) 581
8. If $\operatorname{Cr}\binom{10}{\mathrm{r}}=$ then $\sum_{r-1}^{10} \mathrm{C}_{\mathrm{r}-1} \mathrm{C}_{\mathrm{r}}$ is equal to-
(A) $\binom{20}{9}$
(B) $\binom{20}{10}$
(C) $\binom{20}{13}$
(D) $\binom{20}{8}$
9. The number of positive integer solution (x, y, z) of the equation $x y z=24$ is-
(A) 18
(B) 20
(C) 24
(D) 30
10. The number of ways in which an examiner can assign 30 marks to 8 questions giving not less than 2 marks to any questions is-
(A) 108120
(B) 124320
(C) 116280
(D) 144240
11. यदि $8 i z^{3}+12 z^{2}-18 z+27 i=0$ है, तो $|z|$ का मान है -
(A) $3 / 2$
(B) $2 / 3$
(C) 1
(D) $3 / 4$
12. यदि $z=1+\cos \frac{\pi}{5}+i \sin \frac{\pi}{5}$ तब $\{\sin (\arg (z)\}$ बराबर है-
(A) $\frac{\sqrt{10-2 \sqrt{5}}}{4}$
(B) $\frac{\sqrt{5-1}}{4}$
(C) $\frac{\sqrt{5+1}}{4}$
(D) कोई नहीं
13. यदि $x=111 \ldots 1$ (20 digits), $y=333 \ldots 3$ (10 digits) तथा $z=222 \ldots 2$ (10 digits) तब $\frac{x-y^{2}}{z}$ बराबर है-
(A) 1
(B) 2
(C) $1 / 2$
(D) 3
14. $\frac{3}{1^{2}}+\frac{5}{1^{2}+2^{2}}+\frac{7}{1^{2}+2^{2}+3^{3}}+\cdots$ के 50 पदों तक का योगफल है-
(A) $50 / 17$
(B) $100 / 17$
(C) $150 / 17$
(D) $200 / 17$
15. $\frac{|X-2|-1}{|X-2|-2} \leq 0$ का समुच्चय हल है-
(A) $[0,1] \cup(3,4)$
$(B)[0,1] \cup[3,4]$
(C) $[-1,1) \cup(3,4]$
(D)इनमें से कोई नहीं
16. यदि $a^{2}+b^{2}+c^{2}=1$ तब $a b+b c+c a$ किस अन्तराल में अस्तित्व रखाते है-
(A) $[1,2]$
(B) $\left[0, \frac{1}{2}\right]$
(C) $\left[-\frac{1}{2}, 1\right]$
(D) $[0,1]$
17. $\left(1+X+\frac{2}{X}\right)^{6}$ के प्रसार में नियत पद है-
(A) 479
(B) 517
(C) 569
(D) 581
18. यदि $\mathrm{C}_{r}\binom{10}{r}=$ तब $\sum_{r-1}^{10} C_{r-1} C_{r}$ बराबर है -
(A) $\binom{20}{9}$
(B) $\binom{20}{10}$
(C) $\binom{20}{13}$
(D) $\binom{20}{8}$
19. समीकरण $x y z=24$ के धनात्मक पूणांक हल (x, y, z) की संख्या है-
(A) 18
(B) 20
(C) 24
(D) 30
20. 8 प्रश्नों में 30 अंक कितने तरीके से बांटे जा सकते है यदि कोई भी प्रश्न 2 अंक से कम ना हो-
(A) 108120
(B) 124320
(C) 116280
(D) 144240
21. $\operatorname{cosec} 10^{\circ}-\sqrt{3} \sec 10^{\circ}$ is equal to-
(A) 1
(B) $1 / 2$
(C) 2
(D) 4
22. $\cos \frac{\pi}{11}+\cos \frac{3 \pi}{11}+\cos \frac{5 \pi}{11}+\cos \frac{7 \pi}{11}+\cos \frac{9 \pi}{11}$ is equal to-
(A) 0
(B) 1
(C) $1 / 2$
(D) $-1 / 2$
23. The ratio of the greatest value of $2-\cos x+\sin ^{2} x$ to its least value is-
(A) $1 / 4$
(B) $9 / 4$
(C) $13 / 4$
(D) $17 / 4$
24. In $\triangle A B C, \tan A+\tan B+\tan C=6, \tan B \tan C=2$, then $\sin ^{2} A$ $: \sin ^{2} B: \sin ^{2} C$ is equal to-
(A) $\frac{9}{10}: \frac{5}{10}: \frac{8}{10}$
(B) $\frac{9}{10}: \frac{7}{10}: \frac{8}{10}$
(C) $\frac{9}{10}: \frac{8}{10}: \frac{7}{10}$
(D) None of these
25. The equation of the base of an equilateral triangle is $x+y=$ 2 and the vertex is $(2,-1)$. The area of triangle is-
(A) $2 \sqrt{3}$
(B) $\sqrt{3} / 6$
(C) $1 / \sqrt{3}$
(D) $2 / \sqrt{3}$
26. The orthocentre of the triangle formed by the points $(0,0)$, $(4,0)$ and $(3,4)$ is-
(A) $(2,0)$
(B) $\left(\frac{3}{2}, 2\right)$
(C) $\left(\frac{3}{4}, 3\right)$
(D) $\left(3, \frac{3}{2}\right)$
27. The image of the lines $2 x-y=1$ in the line $x+y=0$ is-
(A) $x+2 y=1$
(B) $x-2 y=1$
(C) $x+2 y=-1$
(D) $2 x+y=1$
28. For all real valus of " a " and " b " lines
$(2 a+b) x+(a+3 b) y+(b-3 a)=0$ and $m x+2 y+6=0$ are concurrent, then m is equal to-
(A) -2
(B) -3
(C) -4
(D) -5
29. A circle passes through the points of intersection of the lines $\lambda x-y+1=0$ and $x-2 y+3=0$ with the coordinate axes, then λ is-
(A) 0
(B) 1
(C) 2
(D) $1 / 2$
30. From the origin chords are drawn to the circle $(x-1)^{2}+y^{2}=$ 1. The equation of the locus of the mid-points of these chords-
(A) $x^{2}+y^{2}-x=0$
(B) $-x^{2}-y^{2}+x=0$
(C) $x^{2}+y-x=0$
(D) None of these
31. The parabola $\mathrm{y} 2=\mathrm{lx}$ and $25\left[(x-3)^{2}+(y+2)^{2}\right]=(3 x-4 y-2)^{2}$ are equal, if I is equal to-
(A) 1
(B) 2
(C) 3
(D) 6
32. The centre of the circle passing through the point $(0,1)$ and touching the curve $y=x^{2}$ at $(2,4)$ is-
(A) $\left(\frac{-16}{5}, \frac{27}{10}\right)$
(B) $\left(\frac{-16}{7}, \frac{53}{10}\right)$
(C) $\left(\frac{-16}{5}, \frac{53}{10}\right)$
(D) None of these
33. cosec $10^{\circ}-\sqrt{3} \sec 10^{\circ}$ बराबर है-
(A) 1 (B) $1 / 2$
(C) 2
(D) 4
34. $\cos \frac{\pi}{11}+\cos \frac{3 \pi}{11}+\cos \frac{5 \pi}{11}+\cos \frac{7 \pi}{11}+\cos \frac{9 \pi}{11}$ बराबर है-
(A) 0
(B) 1
(C) $1 / 2$
(D) $-1 / 2$
35. $2-\cos x+\sin ^{2} x$ का महत्ताम मान का अनुपात से इसका कम मान है-
(A) $1 / 4$
(B) $9 / 4$
(C) $13 / 4$
(D) $17 / 4$
36. $\triangle A B C$ में $\tan A+\tan B+\tan C=6, \tan B \tan C=2$ तब $\sin ^{2} A: \sin ^{2} B: \sin ^{2} C$ बराबर है-
(A) $\frac{9}{10}: \frac{5}{10}: \frac{8}{10}$
(B) $\frac{9}{10}: \frac{7}{10}: \frac{8}{10}$
(C) $\frac{9}{10}: \frac{8}{10}: \frac{7}{10}$
(D) इनमें से कोई नहीं
37. एक समबाहु त्रिभुज के आधार की समीकरण $x+y=2$ तथा इसका शीर्ष $(2,-1)$ है, तो त्रिभुज का क्षेत्रफल होगा-
(A) $2 \sqrt{3}$
(B) $\sqrt{3} / 6$
(C) $1 / \sqrt{3}$
(D) $2 / \sqrt{3}$
38. बिन्दुओं $(0,0),(4,0)$ तथा $(3,4)$ से निर्मित त्रिभुज का लम्बके न्द्र होगा-
(A) $(2,0)$
(B) $\left(\frac{3}{2}, 2\right)$
(C) $\left(\frac{3}{4}, 3\right)$
(D) $\left(3, \frac{3}{2}\right)$
39. रे खा $x+y=0$ में रे खा $2 x-y=1$ का प्रतिबिम्ब हो गा-
(A) $x+2 y=1$
(B) $x-2 y=1$
(C) $x+2 y=-1$
(D) $2 x+y=1$
40. a तथा b के सभी वास्तविक मानों के लिए रेखाऐं
$(2 a+b) x+(a+3 b) y+(b-3 a)=0$ तथा $m x+2 y+6$ $=0$ संगामी है, तब m बराबर होगा-
(A) -2
(B) -3
(C) -4
(D) -5
41. एक वृत्त रेखाओं $\lambda x-y+1=0$ तथा $x-2 y+3=0$ के प्रतिच्छे दी बिन्दु तथा निर्दें शांक अक्षां के साथ गुजरता है तब λ है-
(A) 0
(B) 1
(C) 2
(D) $1 / 2$
42. मूल बिन्दु से वृत्त $(x-1)^{2}+y^{2}=1$ पर जीवाऐं खींचो गई है। तब इन जीवाओं के मध्य बिन्दु के बिन्दुपथ का समीकरण होगा-
(A) $x^{2}+y^{2}-x=0$
(B) $-x^{2}-y^{2}+x=0$
(C) $x^{2}+y-x=0$
(D) None of these
43. परवलय $y^{2}=\lambda x$

तथा $25\left[(x-3)^{2}+(y+2)^{2}\right]=(3 x-4 y-2)^{2}$ बराबर है, तब λ का मान है-
(A) 1
(B) 2
(C) 3
(D) 6
22. एक वृत्त का केन्द्रक बिन्दु $(0,1)$ से गुजरता है तथा वक्र y $=x^{2}$ को बिन्दु $(2,4)$ पर स्पर्श करता है, तो केन्द्रक के निर्देंशांक है-
(A) $\left(\frac{-16}{5}, \frac{27}{10}\right)$
(B) $\left(\frac{-16}{7}, \frac{53}{10}\right)$
(C) $\left(\frac{-16}{5}, \frac{53}{10}\right)$
(D) इनमें से कोई नहीं
23. Image of the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$ in the line $x+y=10$ is-
(A) $\frac{(x-10)^{2}}{16}+\frac{(y-10)^{2}}{16}=1$
(B) $\frac{(x-10)^{2}}{25}+\frac{(y-10)^{2}}{16}=1$
(C) $\frac{(x-5)^{2}}{16}+\frac{(y-5)^{2}}{25}=1$
(D) $\frac{(x-5)^{2}}{25}+\frac{(y-5)^{2}}{16}=1$
24. The eccentric angle of a point on the ellipse $\frac{x^{2}}{6}+\frac{y^{2}}{2}=1$ whose distance from the centre of the ellipse is 2 , is-
(A) $\frac{\pi}{4}$
(B) $\frac{3 \pi}{2}$
(C) $\frac{5 \pi}{3}$
(D) $\frac{7 \pi}{6}$
25. Equation of the hyperbola with eccentricity $\frac{3}{2}$ and foci at (± 2, 0) is-
(A) $\frac{x^{2}}{4}+\frac{y^{2}}{5}=\frac{4}{9}$
(B) $\frac{x^{2}}{9}-\frac{y^{2}}{9}=\frac{4}{9}$
(C) $\frac{x^{2}}{4}-\frac{y^{2}}{9}=1$
(D) None of these
26. The common tangent to $9 x^{2}-4 y^{2}=36$ and $x^{2}+y^{2}=3$ is-
(A) $y-2 \sqrt{3 x}-\sqrt{39}=0$
(B) $y+2 \sqrt{3 x}+\sqrt{39}=0$
(C) $y-2 \sqrt{3 x}+\sqrt{39}=0$
(D) None of the above
27. If $\sum_{i=1}^{18}\left(x_{i}-8\right)=9$ and $\sum_{i=1}^{18}\left(x_{i}-8\right)^{2}=45$,then the standard deviation of $x_{1}, x_{2}, \ldots . ., x_{18}$ is-
(A) $4 / 9$
(B) $9 / 4$
(C) $3 / 2$
(D) None
28. The mean of five observations is 4 and their variance is 5.2.

If three of them are $1,2,6$ then other two are-
(A) 4,7
(B) 2,9
(C) 5, 6
(D) 2,10
29. $\sim(p \vee q) \vee(\sim p \wedge q)$ is logically equivalent to-
(A) $\sim p$
(B) p
(C) q
(D) $\sim q$
30. If both p and q are false, then-
(A) $p \wedge q$ is true
(B) $p \vee q$ is true
(C) $p \Rightarrow q$ is true
(D) $p \Leftrightarrow q$ is false
31. The first term of an A.P. is 2 and common difference is 4 .

The sum of its 40 terms will be -
(A) 3200
(B) 1600
(C) 200
(D) 2800
32. If the sum of n terms of an AP is $2 n^{2}+5 n$, then its nth term
(A) $4 n-3$
(B) $4 n+3$
(C) $3 n+4$
(D) $3 n-4$
33. If the roots of the equation $(b-c) x^{2}+(c-a) x+(a-b)=0$ are equal , then a, b, c will be in-
(A) A.P.
(B) G..P
(C) H.P.
(D) None
34. If $\sin \theta=-\frac{1}{\sqrt{2}}$ and $\tan \theta=1$, then q lies in which quadrant-
(A) First
(B) Second
(C) Third
(D) Fourth
35. If $A-B=\frac{\pi}{4}$, then $(1+\tan A)(1-\tan B)=$
(A) 1
(B) 2
(C) -1
(D) -2
36. $(i 10+1)(i 9+1)(i 8+1) \ldots \ldots(i+1)$ equals-
(A) -1
(B) 1
(C) i
(D) 0
23. दीर्घवृत्त $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$ का प्रतिबिम्ब रे खा $\mathrm{x}+\mathrm{y}=10$ में हो गा-
(A) $\frac{(x-10)^{2}}{16}+\frac{(y-10)^{2}}{16}=1$
(B) $\frac{(x-10)^{2}}{25}+\frac{(y-10)^{2}}{16}=1$
(C) $\frac{(x-5)^{2}}{16}+\frac{(y-5)^{2}}{25}=1$
(D) $\frac{(x-5)^{2}}{25}+\frac{(y-5)^{2}}{16}=1$
24. (D) $\frac{(x-5)^{2}}{25}+\frac{(y-5)^{2}}{16}=1$ दीर्ध वृत्त $\frac{x^{2}}{6}+\frac{y^{2}}{2}=1$ पर एक बिन्दु का उत्केन्द्रण कोण जिसकी दीर्घवृत्त के केन्द्रक से दूरी 2 है, वह है-
(A) $\frac{\pi}{4}$
(B) $\frac{3 \pi}{2}$
(C) $\frac{5 \pi}{3}$
(D) $\frac{7 \pi}{6}$
25. उत्केन्द्र ता $\frac{3}{2}$ वाले अतिपरवलय की समीकरण होगी जिसकी नाभि $(\pm 2,0)$ है -
(A) $\frac{x^{2}}{4}+\frac{y^{2}}{5}=\frac{4}{9}$
(B) $\frac{x^{2}}{9}-\frac{y^{2}}{9}=\frac{4}{9}$
(C) $\frac{x^{2}}{4}-\frac{y^{2}}{9}=1$
(D)इनमें से कोई नहीं
26. $9 x^{2}-4 y^{2}=36$ तथा $x^{2}+y^{2}=3$ की उभयनिष्ठ स्पर्श रे खा है-
(A) $y-2 \sqrt{3 x}-\sqrt{39}=0$
(B) $y+2 \sqrt{3 x}+\sqrt{39}=0$
(C) $y-2 \sqrt{3 x}+\sqrt{39}=0$
(D) उपरोक्त में से कोई नहीं
27. यदि $\sum_{i=1}^{18}\left(x_{i}-8\right)=9$ तथा $\sum_{i=1}^{18}\left(x_{i}-8\right)^{2}=45$ तब $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots ., \mathrm{x}_{18}$ का मानक विचलन है-
(A) $4 / 9$
(B) $9 / 4$
(C) $3 / 2$
(D) कोई नहीं
28. पाँच परीक्षणांं का माध्य 4 है तथा इनका प्रसरण 5.2 है। यदि इनमें से तीन $1,2,6$ है तब अन्य दो है-
(A) 4,7
(B) 2,9
(C) 5,6
(D) 2, 10
29. $\sim(p \vee q) V(\sim p \wedge q)$ तर्कीय तुल्य है-
(A) $\sim p$
(B) p
(C) q
(D) $\sim q$
30. यदि p तथा q दोनों असत्य है, तब- $p \wedge q$ सत्य है
(A) $p \wedge q$ सत्य है
(B) $p \vee q$ सत्य है
(C) $p \Rightarrow q$ सत्य है
(D) $p \Leftrightarrow q$ असत्य है
31. यदि एक समान्तर श्रेणी का प्रथम पद 2 तथा सार्वअन्तर 4 हो, तो 40 पदों का योग होगा-
(A) 3200
(B) 1600
(C) 200
(D) 2800
32. यदि किसी समान्तर श्रेढ़ी के n पदों का योग $2 n^{2}+5 n$ है, तो इसका $n^{\text {वाँ पद है- }}$
(A) $4 n-3$
(B) $4 n+3$
(C) $3 n+4$
(D) $3 n-4$
33. समीकरण $(b-c) x^{2}+(c-a) x+(a-b)=0$ के मूल समान हों, तो a, b, c होंगे-
(A) स.श्रे. में
(B) गु.श्रे. में
(C) ह.श्रे. में
(D) कोई नहीं
34. यदि $\sin \theta=-\frac{1}{\sqrt{2}}$ तथा $\tan \theta=1$, तो किस चतुर्थांश में होगा -
(A) प्रथम
(B) द्वितीय
(C) तृतीय
(D) चौथा
35. यदि $\mathrm{A}-\mathrm{B}=\frac{\pi}{4}$, तो $(1+\tan \mathrm{A})(1-\tan \mathrm{B})$ बराबर होगा -
(A) 1
(B) 2
(C) -1
(D) -2
36. $(i 10+1)(i 9+1)(i 8+1) \ldots \ldots \ldots . .(i+1)$ बराबर है-
(A) -1
(B) 1
(C) i
(D) 0
37. The value of the expression
$\frac{i^{592}+\mathrm{i}^{590}+\mathrm{i}^{588}+\mathrm{i}^{586}+\mathrm{i}^{584}}{\mathrm{i}^{582}+\mathrm{i}^{580}+\mathrm{i}^{578}+\mathrm{i}^{576}+\mathrm{i}^{574}} \mathrm{is}$ -
(A) 0
(B) 1
(C) -1
(D) -2
38. The difference between the roots of the equation $x^{2}-7 x-9=0$ is
(A) 7
(B) $\sqrt{85}$
(C) 9
(D) $2 \sqrt{85}$
39. If the sum of the roots of the equation $a x^{2}+4 x+c=0$ is half of their difference, then the value of ac is-
(A) 4
(B) 8
(C) 12
(D) -12
40. If the 4 th term in the expansion of $\left(a x+\frac{1}{x}\right)^{n}$ is,$\frac{5}{2}$ then the values of a and n are-
(A) $1 / 2,6$
(B) 1,3
(C) $1 / 2,3$
(D) Can not be found
41. what value of m, the roots of the equation $x^{2}-x+m=0$ are not real-
(A) $] \frac{1}{4}, \infty[$
(B) $]-\infty, \frac{1}{4}$ [
(C) $]-\frac{1}{4}, \frac{1}{4}[$
(D) None
42. If the sum of n terms of an AP is $2 n^{2}+5 n$, then its nth term
(A) $4 n-3$
(B) $4 n+3$
(C) $3 n+4$
(D) $3 n-4$
43. There are 13 players of cricket out of which 4 are bowlers. In how many ways a team of eleven be selected from them so as to include at least two bowlers-
(A) 55
(B) 72
(C) 78
(D) None
44. If $\sin \theta+\operatorname{cosec} \theta=2$ then the value of $\sin 8 \theta+\operatorname{cosec} 8 \theta$ is equal
(A) 2
(B) 2^{8}
(C) 2^{4}
(D) None
45. The quadrilateral formed by the points (a,-b), (0,0), $(-a, b)$ and $\left(a b,-b^{2}\right)$ is-
(A) rectangle
(B) parallelogram
(C) square
(D) None of these
46. If the vertices of a triangle have integral coordinates, then the triangle is-
(A) Isosceles
(B) Never equilateral
(C) Equilateral
(D) None of these
47. If $(x, 3)$ and $(3,5)$ are the extremities of a diameter of a circle with centre at $(2, y)$. Then the value of x and y are-
(A) $x=1, y=4$
(B) $x=4, y=1$
(C) $x=8, y=2$
(D) None of these
48. Solution of $\frac{x-7}{x+3}>2$ is-
(A) $(-3, \infty)$
(B) $(-\infty,-13)$
(C) $(-13,-3)$
(D) none
49. The conjugate of $\frac{3-2 i}{5-3 i}$ is equal to-
(A) $-\frac{1}{34}(9+19 i)$
(B) $\frac{1}{34}(9-19 i)$
(C) $\frac{1}{34}(19 i-9)$
(D) $\frac{1}{34}(9+19 i)$
50. If 4th term of an $A P$ is 64 and its 54 th term is -61 , then its common difference is -
(A) $5 / 2$
(B) $-5 / 2$
(C) $3 / 50$
(D) $-3 / 50$
37. व्यंजक $\frac{i^{592}+\mathrm{i}^{590}+\mathrm{i}^{588}+\mathrm{i}^{586}+\mathrm{i}^{584}}{\mathrm{i}^{582}+\mathrm{i}^{580}+\mathrm{i}^{578}+\mathrm{i}^{576}+\mathrm{i}^{574}}$ का मान होगा-
(A) 0
(B) 1
(C) -1
(D) -2
38. समीकरण $x^{2}-7 x-9=0$ के मूलों का अन्तर है-
(A) 7
(B) $\sqrt{85}$
(C) 9
(D) $2 \sqrt{85}$
39. यदि समीकरण $\mathrm{ax}^{2}+4 \mathrm{x}+\mathrm{c}=0$ के मूलों का योग उनके अन्तर का आधा हो तो ac का मान होगा -
(A) 4
(B) 8
(C) 12
(D) -12
40. यदि $\left(a x+\frac{1}{x}\right)^{n}$ के प्रसार में चौथा पद $\frac{5}{2}$ हो, तो a तथा n के मान क्रमश: है-
(A) $1 / 2,6$
(B) 1, 3
(C) $1 / 2,3$
(D) ज्ञात नहीं कर सकते।
41. m के किस मान के लिए समीकरण $x^{2}-x+m=0$ के मूल वास्तविक नहीं होंगे-
(A) $] \frac{1}{4}, \infty[$
(B) $]-\infty, \frac{1}{4}[$
(C) $]-\frac{1}{4}, \frac{1}{4}[$
(D) कोई नही
42. यदि किसी समान्तर श्रेढ़ी के n पदों का योग $2 n^{2}+5 n$ है, तो इसका $n^{\text {वाँ }}$ पद है-
(A) $4 n-3$
(B) $4 n+3$
(C) $3 n+4$
(D) $3 n-4$
43. किसी क्रिकेट टीम में 13 खिलाड़ियों में से 4 गेंदबाज हैं, तो उनमें से ग्यारह खिलाड़ियों की टीम कितने प्रकार से बनाई जा सकती है जबकि कम से कम दो गेंदबाज हों-
(A) 55
(B) 72
(C) 78
(D) कोई नही
44. यदि $\sin \theta+\operatorname{cosec} \theta=2$ तो $\sin ^{8} \theta+\operatorname{cosec}^{8} \theta$ का मान होगा-
(A) 2
(B) 2^{8}
(C) 2^{4}
(D) कोई नही
45. बिन्दु $(a,-b),(0,0),(-a, b)$ व $\left(a b,-b^{2}\right)$ से बनने वाला चतुर्भुज है-
(A) आयत
(B) समान्तर चतुर्भुज
(C) वर्ग
(D) इनमें से कोई नहीं
46. यदि एक त्रिभुज के शीर्षों के निर्देशांक पूर्णांक हों तो त्रिभुज नहीं होगा-
(A) समद्विबाहु
(B) समबाहु
(C) विषमबाहु
(D) इनमें से कोई नहीं
47. यदि एक वृत्त के व्यास के सिरे $(x, 3)$ तथा $(3,5)$ है तथा वृत्त का केन्द्र $(2, y)$ है, तो x तथा y का मान होगा-
(A) $x=1, y=4$
(B) $x=4, y=1$
(C) $x=8, y=2$
(D) इन में से कोई नहीं
48. $\frac{x-7}{x+3}>2$ का हल है-
(A) $(-3, \infty)$
(B) $(-\infty,-13)$
(C) $(-13,-3)$
(D)कोई नहीं
49. $\frac{3-2 i}{5-3 i}$ का संयुग्मी होगा-
(A) $-\frac{1}{34}(9+19 i)$
(B) $\frac{1}{34}(9-19 i)$
(C) $\frac{1}{34}(19 i-9)$
(D) $\frac{1}{34}(9+19 i)$
50. यदि AP 4th पद 64 है तथा इसका 54th पद 61 तो इसका उभयनिष्ठ अन्तर है-
(1) $5 / 2$
(2) $-5 / 2$
(3) $3 / 50$
(4) $-3 / 50$

