INTRA SCHOOL ROUND (First Round)

NUMBER SYSTEMS

  1. Real Numbers

Euclid’s division lemma, Fundamental Theorem of Arithmetic – statements after reviewing work done earlier and after illustrating and motivating through examples, Proofs of results – irrationality of √2, √3, √5, decimal expansions of rational numbers in terms of terminating/non-terminating recurring decimals.


ALGEBRA

  1. Polynomials

Zeros of a polynomial. Relationship between zeros and coefficients of quadratic polynomials. Statement and simple problems on division algorithm for polynomials with real coefficients.

  1. Pair Of Linear Equations In Two Variables

Pair of linear equations in two variables and their graphical solution. Geometric representation of different possibilities of solutions/inconsistency.

Algebraic conditions for number of solutions. Solution of a pair of linear equations in two variables algebraically – by substitution, by elimination and by cross multiplication method. Simple situational problems must be included. Simple problems on equations reducible to linear equations may be included.

  1. Quadratic Equations

Standard form of a quadratic equation ax2+bx+c=0, (a ≠ 0). Solution of the quadratic equations (only real roots) by factorization, by completing the square and by using quadratic formula. Relationship between discriminant and nature of roots.

Situational problems based on quadratic equations related to day to day activities to be incoporated.

  1. Arithmetic Progressions

Motivation for studying Arithmetic Progression Derivation of standard results of finding the nth term and sum of first n terms and their application in solving daily life problems.


GEOMETRY

  1. Triangles

Definitions, examples, counter examples of similar triangles.

  1. (Prove) If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio.
  2. (Motivate) If a line divides two sides of a triangle in the same ratio, the line is parallel to the third side.
  3. (Motivate) If in two triangles, the corresponding angles are equal, their corresponding sides are proportional and the triangles are similar.
  4. (Motivate) If the corresponding sides of two triangles are proportional, their corresponding angles are equal and the two triangles are similar.
  5. (Motivate) If one angle of a triangle is equal to one angle of another triangle and the sides including these angles are proportional, the two triangles are similar.
  6. (Motivate) If a perpendicular is drawn from the vertex of the right angle of a right triangle to the hypotenuse, the triangles on each side of the perpendicular are similar to the whole triangle and to each other.
  7. (Prove) The ratio of the areas of two similar triangles is equal to the ratio of the squares on their corresponding sides.
  8. (Prove) In a right triangle, the square on the hypotenuse is equal to the sum of the squares on the other two sides.
  9. (Prove) In a triangle, if the square on one side is equal to sum of the squares on the other two sides, the angles opposite to the first side is a right traingle.

 

  1. Circles

Tangents to a circle motivated by chords drawn from points coming closer and closer to the point.

  1. (Prove) The tangent at any point of a circle is perpendicular to the radius through the point of contact.
  2. (Prove) The lengths of tangents drawn from an external point to circle are equal.

 

Constructions

  • Division of a line segment in a given ratio (internally).
  • Tangent to a circle from a point outside it.
  • Construction of a triangle similar to a given triangle.

TRIGONOMETRY

1 . Introduction To Trigonometry

Trigonometric ratios of an acute angle of a right-angled triangle. Proof of their existence (well defined); motivate the ratios, whichever are defined at 0° and 90°. Values (with proofs) of the trigonometric ratios of 30°, 45° and 60°. Relationships between the ratios.

  1. Trigonometric Identities

Proof and applications of the identity sin2A + cos2A = 1. Only simple identities to be given. Trigonometric ratios of complementary angles.

  1. Heights And Distances

Simple and believable problems on heights and distances. Problems should not involve more than two right triangles. Angles of elevation / depression should be only 30°, 45°, 60°.


STATISTICS AND PROBABILITY

  1. Statistics

Mean, median and mode of grouped data (bimodal situation to be avoided). Cumulative frequency graph.

  1. Probability

Classical definition of probability. Connection with probability as given in Class IX. Simple problems on single events, not using set notation.


COORDINATE GEOMETRY

  1. Lines (In Two-Dimensions)

Review the concepts of coordinate geometry done earlier including graphs of linear equations. Awareness of geometrical representation of quadratic polynomials. Distance between two points and section formula (internal). Area of a triangle.


MENSURATION

  1. Areas Related To Circles

Motivate the area of a circle; area of sectors and segments of a circle. Problems based on areas and perimeter / circumference of the above said plane figures. (In calculating area of segment of a circle, problems should be restricted to central angle of 60°, 90° and 120° only. Plane figures involving triangles, simple quadrilaterals and circle should be taken.)

  1. Surface Areas And Volumes

(i) Problems on finding surface areas and volumes of combinations of any two of the following: cubes, cuboids, spheres, hemispheres and right circular cylinders/cones. Frustum of a cone.

(ii) Problems involving converting one type of metallic solid into another and other mixed problems. (Problems with combination of not more than two different solids be taken.)


SETS AND FUNCTIONS

  1. Sets

Sets and their representations. Empty set. Finite and Infinite sets. Equal sets. Subsets. Subsets of a set of real numbers especially intervals (with notations). Power set. Universal set. Venn diagrams. Union and Intersection of sets. Difference of sets. Complement of a set. Properties of Complement Sets. Practical Problems based on sets.

  1. Relations & Functions

Ordered pairs, Cartesian product of sets. Number of elements in the cartesian product of two finite sets. Cartesian product of the sets of real (upto R x R). Definition of relation, pictorial diagrams, domain, co-domain and range of a relation. Function as a special kind of relation from one set to another. Pictorial representation of a function, domain, co-domain and range of a function. Real valued functions, domain and range of these functions: constant, identity, polynomial, rational, modulus, signum, exponential, logarithmic and greatest integer functions, with their graphs. Sum, difference, product and quotients of functions.

  1. Trigonometric Functions

Positive and negative angles. Measuring angles in radians and in degrees and conversion of one into other. Definition of trigonometric functions with the help of unit circle. Truth of the sin2x+cos2x=1, for all x. Signs of trigonometric functions. Domain and range of trignometric functions and their graphs. Expressing sin (x±y) and cos (x±y) in terms of sinx, siny, cosx & cosy and their simple application. Deducing identities like the following:

Identities related to sin 2x, cos2x, tan 2x, sin3x, cos3x and tan3x. General solution of trigonometric equations of the type sin y = sin a, cos y = cos a and tan y = tan a.


ALGEBRA

  1. Principle Of Mathematical Induction

Process of the proof by induction, motivating the application of the method by looking at natural numbers as the least inductive subset of real numbers. The principle of mathematical induction and simple applications.

  1. Complex Numbers And Quadratic Equations

Need for complex numbers, especially √1, to be motivated by inability to solve some of the quardratic equations. Algebraic properties of complex numbers. Argand plane and polar representation of complex numbers. Statement of Fundamental Theorem of Algebra, solution of quadratic equations in the complex number system. Square root of a complex number.

  1. Linear Inequalities

Linear inequalities. Algebraic solutions of linear inequalities in one variable and their representation on the number line. Graphical solution of linear inequalities in two variables. Graphical solution of system of linear inequalities in two variables.
4. Permutations And Combinations

Fundamental principle of counting. Factorial n. (n!)Permutations and combinations, derivation of formulae and their connections, simple applications.

  1. Binomial Theorem

History, statement and proof of the binomial theorem for positive integral indices. Pascal’s triangle, General and middle term in binomial expansion, simple applications.

  1. Sequence And Series

Sequence and Series. Arithmetic Progression (A.P.). Arithmetic Mean (A.M.) Geometric Progression (G.P.), general term of a G.P., sum of n terms of a G.P., Arithmetic and Geometric series infinite G.P. and its sum, geometric mean (G.M.), relation between A.M. and G.M. Formula for the following special sum:


COORDINATE GEOMETRY

  1. Straight Lines

Brief recall of two dimensional geometry from earlier classes. Shifting of origin. Slope of a line and angle between two lines. Various forms of equations of a line: parallel to axis, point-slope form, slope-intercept form, two-point form, intercept form and normal form. General equation of a line. Equation of family of lines passing through the point of intersection of two lines. Distance of a point from a line.

  1. Conic Sections

Sections of a cone: circles, ellipse, parabola, hyperbola; a point, a straight line and a pair of intersecting lines as a degenerated case of a conic section. Standard equations and simple properties of parabola, ellipse and hyperbola. Standard equation of a circle.

  1. Introduction To Three–Dimensional Geometry

Coordinate axes and coordinate planes in three dimensions. Coordinates of a point. Distance between two points and section formula.


CALCULUS

  1. Limits And Derivatives

Derivative introduced as rate of change both as that of distance function and geometrically.

Intutive idea of limit. Limits of polynomials and rational functions, trignometric, exponential and logarithmic functions. Definition of derivative, relate it to slope of tangent of a curve, derivative of sum, difference, product and quotient of functions. The derivative of polynomial and trignometric functions.


MATHEMATICAL REASONING

  1. Mathematical Reasoning

Mathematically acceptable statements. Connecting words/ phrases – consolidating the understanding of “if and only if (necessary and sufficient) condition”, “implies”, “and/or”, “implied by”, “and”, “or”, “there exists” and their use through variety of examples related to real life and Mathematics. Validating the statements involving the connecting words difference between contradiction, converse and contrapositive.


STATISTICS AND PROBABILITY

  1. Statistics

Measures of dispersion; Range, mean deviation, variance and standard deviation of ungrouped/grouped data. Analysis of frequency distributions with equal means but different variances.

  1. Probability

Random experiments; outcomes, sample spaces (set representation). Events; occurrence of events, ‘not’, ‘and’ and ‘or’ events, exhaustive events, mutually exclusive events, Axiomatic (set theoretic) probability, connections with the theories of earlier classes. Probability of an event, probability of ‘not’, ‘and’ and ‘or’ events.


COORDINATE GEOMETRY

  1. Lines (In Two-Dimensions)

Review the concepts of coordinate geometry done earlier including graphs of linear equations. Awareness of geometrical representation of quadratic polynomials. Distance between two points and section formula (internal). Area of a triangle.


MENSURATION

  1. Areas Related To Circles

Motivate the area of a circle; area of sectors and segments of a circle. Problems based on areas and perimeter / circumference of the above said plane figures. (In calculating area of segment of a circle, problems should be restricted to central angle of 60°, 90° and 120° only. Plane figures involving triangles, simple quadrilaterals and circle should be taken.)

  1. Surface Areas And Volumes
  • Problems on finding surface areas and volumes of combinations of any two of the following: cubes, cuboids, spheres, hemispheres and right circular cylinders/cones. Frustum of a cone.
  • Problems involving converting one type of metallic solid into another and other mixed problems. (Problems with combination of not more than two different solids be taken.)

INTER SCHOOL ROUND (Second Round)

SETS AND FUNCTIONS

  1. Sets

Sets and their representations. Empty set. Finite and Infinite sets. Equal sets. Subsets. Subsets of a set of real numbers especially intervals (with notations). Power set. Universal set. Venn diagrams. Union and Intersection of sets. Difference of sets. Complement of a set. Properties of Complement Sets. Practical Problems based on sets.

  1. Relations & Functions

Ordered pairs, Cartesian product of sets. Number of elements in the cartesian product of two finite sets. Cartesian product of the sets of real (upto R x R). Definition of relation, pictorial diagrams, domain, co-domain and range of a relation. Function as a special kind of relation from one set to another. Pictorial representation of a function, domain, co-domain and range of a function. Real valued functions, domain and range of these functions: constant, identity, polynomial, rational, modulus, signum, exponential, logarithmic and greatest integer functions, with their graphs. Sum, difference, product and quotients of functions.Ordered pairs, Cartesian product of sets. Number of elements in the cartesian product of two finite sets. Cartesian product of the sets of real (upto R x R). Definition of relation, pictorial diagrams, domain, co-domain and range of a relation. Function as a special kind of relation from one set to another. Pictorial representation of a function, domain, co-domain and range of a function. Real valued functions, domain and range of these functions: constant, identity, polynomial, rational, modulus, signum, exponential, logarithmic and greatest integer functions, with their graphs. Sum, difference, product and quotients of functions.

  1. Trigonometric Functions

Positive and negative angles. Measuring angles in radians and in degrees and conversion of one into other. Definition of trigonometric functions with the help of unit circle. Truth of the sin2x+cos2x=1, for all x. Signs of trigonometric functions. Domain and range of trignometric functions and their graphs. Expressing sin (x±y) and cos (x±y) in terms of sinx, siny, cosx & cosy and their simple application. Deducing identities like the following:

Identities related to sin 2x, cos2x, tan 2x, sin3x, cos3x and tan3x. General solution of trigonometric equations of the type sin y = sin a, cos y = cos a and tan y = tan a.


ALGEBRA

  1. Principle Of Mathematical Induction

Process of the proof by induction, motivating the application of the method by looking at natural numbers as the least inductive subset of real numbers. The principle of mathematical induction and simple applications.

  1. Complex Numbers And Quadratic Equations

Need for complex numbers, especially √1, to be motivated by inability to solve some of the quardratic equations. Algebraic properties of complex numbers. Argand plane and polar representation of complex numbers. Statement of Fundamental Theorem of Algebra, solution of quadratic equations in the complex number system. Square root of a complex number.

  1. Linear Inequalities

Linear inequalities. Algebraic solutions of linear inequalities in one variable and their representation on the number line. Graphical solution of linear inequalities in two variables. Graphical solution of system of linear inequalities in two variables.

  1. Permutations And Combinations

Fundamental principle of counting. Factorial n. (n!)Permutations and combinations, derivation of formulae and their connections, simple applications.

  1. Binomial Theorem

History, statement and proof of the binomial theorem for positive integral indices. Pascal’s triangle, General and middle term in binomial expansion, simple applications.

  1. Sequence And Series

Sequence and Series. Arithmetic Progression (A.P.). Arithmetic Mean (A.M.) Geometric Progression (G.P.), general term of a G.P., sum of n terms of a G.P., Arithmetic and Geometric series infinite G.P. and its sum, geometric mean (G.M.), relation between A.M. and G.M. Formula for the following special sum:


COORDINATE GEOMETRY

  1. Straight Lines

Brief recall of two dimensional geometry from earlier classes. Shifting of origin. Slope of a line and angle between two lines. Various forms of equations of a line: parallel to axis, point-slope form, slope-intercept form, two-point form, intercept form and normal form. General equation of a line. Equation of family of lines passing through the point of intersection of two lines. Distance of a point from a line.

  1. Conic Sections

Sections of a cone: circles, ellipse, parabola, hyperbola; a point, a straight line and a pair of intersecting lines as a degenerated case of a conic section. Standard equations and simple properties of parabola, ellipse and hyperbola. Standard equation of a circle.

  1. Introduction To Three–Dimensional Geometry

Coordinate axes and coordinate planes in three dimensions. Coordinates of a point. Distance between two points and section formula.


CALCULUS

  1. Limits And Derivatives

Derivative introduced as rate of change both as that of distance function and geometrically.
Intutive idea of limit. Limits of polynomials and rational functions, trignometric, exponential and logarithmic functions. Definition of derivative, relate it to slope of tangent of a curve, derivative of sum, difference, product and quotient of functions. The derivative of polynomial and trignometric functions.


MATHEMATICAL REASONING

  1. Mathematical Reasoning

Mathematically acceptable statements. Connecting words/ phrases – consolidating the understanding of “if and only if (necessary and sufficient) condition”, “implies”, “and/or”, “implied by”, “and”, “or”, “there exists” and their use through variety of examples related to real life and Mathematics. Validating the statements involving the connecting words difference between contradiction, converse and contrapositive.


STATISTICS AND PROBABILITY

  1. Statistics

Measures of dispersion; Range, mean deviation, variance and standard deviation of ungrouped/grouped data. Analysis of frequency distributions with equal means but different variances.

  1. Probability

Random experiments; outcomes, sample spaces (set representation). Events; occurrence of events, ‘not’, ‘and’ and ‘or’ events, exhaustive events, mutually exclusive events, Axiomatic (set theoretic) probability, connections with the theories of earlier classes. Probability of an event, probability of ‘not’, ‘and’ and ‘or’ events.